Package: localIV 0.3.1
localIV: Estimation of Marginal Treatment Effects using Local Instrumental Variables
In the generalized Roy model, the marginal treatment effect (MTE) can be used as a building block for constructing conventional causal parameters such as the average treatment effect (ATE) and the average treatment effect on the treated (ATT). Given a treatment selection equation and an outcome equation, the function mte() estimates the MTE via the semiparametric local instrumental variables method or the normal selection model. The function mte_at() evaluates MTE at different values of the latent resistance u with a given X = x, and the function mte_tilde_at() evaluates MTE projected onto the estimated propensity score. The function ace() estimates population-level average causal effects such as ATE, ATT, or the marginal policy relevant treatment effect.
Authors:
localIV_0.3.1.tar.gz
localIV_0.3.1.zip(r-4.5)localIV_0.3.1.zip(r-4.4)localIV_0.3.1.zip(r-4.3)
localIV_0.3.1.tgz(r-4.4-any)localIV_0.3.1.tgz(r-4.3-any)
localIV_0.3.1.tar.gz(r-4.5-noble)localIV_0.3.1.tar.gz(r-4.4-noble)
localIV_0.3.1.tgz(r-4.4-emscripten)localIV_0.3.1.tgz(r-4.3-emscripten)
localIV.pdf |localIV.html✨
localIV/json (API)
NEWS
# Install 'localIV' in R: |
install.packages('localIV', repos = c('https://xiangzhou09.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/xiangzhou09/localiv/issues
- toydata - A Hypothetical Dataset for Illustrative Purpose
Last updated 4 years agofrom:23d308ab0b. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | NOTE | Nov 20 2024 |
R-4.5-linux | NOTE | Nov 20 2024 |
R-4.4-win | NOTE | Nov 20 2024 |
R-4.4-mac | NOTE | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:acemtemte_atmte_localIVmte_normalmte_tilde_at
Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecowplotcpp11DerivdigestdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandKernSmoothlabelinglatticelifecyclelme4lmtestmagrittrMASSMatrixMatrixModelsmaxLikmgcvmicrobenchmarkminqamiscToolsmodelrmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangsampleSelectionsandwichscalesSparseMstringistringrsurvivalsystemfittibbletidyrtidyselectutf8vctrsVGAMviridisLitewithrzoo