Package: localIV 0.3.1

localIV: Estimation of Marginal Treatment Effects using Local Instrumental Variables

In the generalized Roy model, the marginal treatment effect (MTE) can be used as a building block for constructing conventional causal parameters such as the average treatment effect (ATE) and the average treatment effect on the treated (ATT). Given a treatment selection equation and an outcome equation, the function mte() estimates the MTE via the semiparametric local instrumental variables method or the normal selection model. The function mte_at() evaluates MTE at different values of the latent resistance u with a given X = x, and the function mte_tilde_at() evaluates MTE projected onto the estimated propensity score. The function ace() estimates population-level average causal effects such as ATE, ATT, or the marginal policy relevant treatment effect.

Authors:Xiang Zhou [aut, cre]

localIV_0.3.1.tar.gz
localIV_0.3.1.zip(r-4.5)localIV_0.3.1.zip(r-4.4)localIV_0.3.1.zip(r-4.3)
localIV_0.3.1.tgz(r-4.4-any)localIV_0.3.1.tgz(r-4.3-any)
localIV_0.3.1.tar.gz(r-4.5-noble)localIV_0.3.1.tar.gz(r-4.4-noble)
localIV_0.3.1.tgz(r-4.4-emscripten)localIV_0.3.1.tgz(r-4.3-emscripten)
localIV.pdf |localIV.html
localIV/json (API)
NEWS

# Install 'localIV' in R:
install.packages('localIV', repos = c('https://xiangzhou09.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/xiangzhou09/localiv/issues

Datasets:
  • toydata - A Hypothetical Dataset for Illustrative Purpose

On CRAN:

3.40 score 5 stars 6 scripts 213 downloads 6 exports 71 dependencies

Last updated 4 years agofrom:23d308ab0b. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winNOTENov 20 2024
R-4.5-linuxNOTENov 20 2024
R-4.4-winNOTENov 20 2024
R-4.4-macNOTENov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:acemtemte_atmte_localIVmte_normalmte_tilde_at

Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecowplotcpp11DerivdigestdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandKernSmoothlabelinglatticelifecyclelme4lmtestmagrittrMASSMatrixMatrixModelsmaxLikmgcvmicrobenchmarkminqamiscToolsmodelrmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangsampleSelectionsandwichscalesSparseMstringistringrsurvivalsystemfittibbletidyrtidyselectutf8vctrsVGAMviridisLitewithrzoo